AVL Tree, AVL木
概要
平衝二分探索木の一つ。
各ノードに高さをもたせ、各ノードの左右の子ノードの高さの差が -1, 0, 1 になるように保つ。
木の高さは高々約 \(1.44 \log_2 N\) になる。
挿入クエリ1回のrotate回数は高々2回、削除クエリ1回のrotate回数は高々 \(O(\log N)\) になる。
計算量
各クエリ \(O(\log N)\)
実装
各ノードに以下の情報を持たせている
-
左右の子ノード, 親ノード
-
key, rank
-
そのノード以下の部分木のサイズ
#include<algorithm>
using namespace std;
template<typename T>
class AVLTree {
struct Node {
Node *left, *right, *prt;
T key;
int height, size;
Node(T x) {
left = right = prt = nullptr;
height = 1;
key = x;
size = 1;
}
inline int factor() const {
int lv = (this->left ? this->left->height : 0);
int rv = (this->right ? this->right->height : 0);
return (rv - lv);
}
inline int update_height() {
return this->height = max(
(this->left ? this->left->height : 0),
(this->right ? this->right->height : 0)
) + 1;
}
inline bool is_left(Node *node) const {
return left == node;
}
inline void assign(Node *node) {
this->key = node->key;
}
inline Node* rotate_left() {
Node *r = this->right, *m = r->left, *p = this->prt;
if(r->prt = p) {
if(p->left == this) p->left = r;
else p->right = r;
}
if(this->right = m) m->prt = this;
r->left = this; this->prt = r;
int sz = this->size;
this->size += (m ? m->size : 0) - r->size;
r->size = sz;
this->update_height();
r->update_height();
return r;
}
inline Node* rotate_right() {
Node *l = this->left, *m = l->right, *p = this->prt;
if(l->prt = p) {
if(p->left == this) p->left = l;
else p->right = l;
}
if(this->left = m) m->prt = this;
l->right = this; this->prt = l;
int sz = this->size;
this->size += (m ? m->size : 0) - l->size;
l->size = sz;
this->update_height();
l->update_height();
return l;
}
inline Node* rotate_double_right() {
Node *l = this->left, *p = this->prt,
*m = l->right, *ml = m->left, *mr = m->right;
if((m->prt = p)) {
if(p->left == this) p->left = m;
else p->right = m;
}
if((l->right = ml)) ml->prt = l;
if((this->left = mr)) mr->prt = this;
m->left = l; l->prt = m;
m->right = this; this->prt = m;
int sz = this->size;
this->size += (mr ? mr->size : 0) - l->size;
l->size += (ml ? ml->size : 0) - m->size;
m->size = sz;
this->update_height();
l->update_height();
m->update_height();
return m;
}
inline Node* rotate_double_left() {
Node *r = this->right, *p = this->prt,
*m = r->left, *ml = m->left, *mr = m->right;
if(m->prt = p) {
if(p->left == this) p->left = m;
else p->right = m;
}
if(this->right = ml) ml->prt = this;
if(r->left = mr) mr->prt = r;
m->left = this; this->prt = m;
m->right = r; r->prt = m;
int sz = this->size;
this->size += (ml ? ml->size : 0) - r->size;
r->size += (mr ? mr->size : 0) - m->size;
m->size = sz;
this->update_height();
r->update_height();
m->update_height();
return m;
}
};
Node *root;
inline Node* find_node(Node *node, T x) {
if(node == nullptr) return nullptr;
while(node->key != x) {
if(x < node->key) {
if(!node->left) break;
node = node->left;
} else {
if(!node->right) break;
node = node->right;
}
}
return node;
}
inline void remove_node(Node *node) {
T x = node->key;
Node *prt = node->prt;
if(!node->left || !node->right) {
Node *n_node = (node->left ? node->left : node->right);
if(prt) {
if(x < prt->key) {
prt->left = n_node;
} else {
prt->right = n_node;
}
}
if((node = n_node)) node->prt = prt;
} else {
Node *c_node = find_node(node->right, x), *n_node = c_node->right;
Node *c_prt = c_node->prt;
if(node->right == c_node) {
if((node->right = n_node)) n_node->prt = c_prt;
} else {
if((c_prt->left = n_node)) n_node->prt = c_prt;
}
node->assign(c_node);
node = n_node; prt = c_prt;
}
while(prt) {
--prt->size;
prt->update_height();
if(prt->is_left(node)) {
if(prt->factor() == 2) {
Node *sib = prt->right;
if(sib->factor() < 0) {
node = prt->rotate_double_left();
} else {
node = prt->rotate_left();
}
} else {
if(prt->factor() == 1) break;
node = prt;
}
prt = node->prt;
} else {
if(prt->factor() == -2) {
Node *sib = prt->left;
if(sib->factor() > 0) {
node = prt->rotate_double_right();
} else {
node = prt->rotate_right();
}
} else {
if(prt->factor() == -1) break;
node = prt;
}
prt = node->prt;
}
}
if(prt) {
node = prt; prt = prt->prt;
while(prt) {
--prt->size;
prt->update_height();
node = prt; prt = node->prt;
}
}
this->root = node;
}
public:
AVLTree() {
root = nullptr;
}
inline bool find(T x) {
if(!this->root) {
return false;
}
Node *node = find_node(this->root, x);
return (node->key == x);
}
inline T at(int k) {
if(!this->root) {
return 0;
}
// assert(0 <= k < size);
Node *node = this->root;
++k;
while(1) {
int l_size = (node->left ? node->left->size : 0) + 1;
if(l_size == k) break;
if(k < l_size) {
node = node->left;
} else {
node = node->right;
k -= l_size;
}
}
return node->key;
}
inline bool insert(T x) {
if(!this->root) {
this->root = new Node(x);
return true;
}
Node *node = find_node(this->root, x);
if(node->key == x) {
return false;
}
Node *new_node = new Node(x);
new_node->prt = node;
if(x < node->key) {
node->left = new_node;
} else {
node->right = new_node;
}
node = new_node;
while(node->prt) {
Node *prt = node->prt;
++prt->size;
prt->update_height();
if(prt->is_left(node)) {
if(prt->factor() == -2) {
if(node->factor() > 0) {
node = prt->rotate_double_right();
} else {
node = prt->rotate_right();
}
} else {
if(prt->factor() >= 0) break;
node = prt;
}
} else {
if(prt->factor() == 2) {
if(node->factor() < 0) {
node = prt->rotate_double_left();
} else {
node = prt->rotate_left();
}
} else {
if(prt->factor() <= 0) break;
node = prt;
}
}
}
if(node->prt) {
node = node->prt;
Node *prt = node->prt;
while(prt) {
++prt->size;
prt->update_height();
node = prt; prt = node->prt;
}
}
this->root = node;
return true;
}
inline bool remove(T x) {
if(!this->root) {
return false;
}
Node *node = find_node(this->root, x);
if(node->key != x) {
return false;
}
remove_node(node);
return true;
}
int size() {
return (this->root ? this->root->size : 0);
}
};
Verified
-
AtCoder: "AtCoder Regular Contest 033 - C問題: データ構造": source (C++14, 113ms)