Left-Leaning Red-Black Tree, LLRB Tree
概要
平衝二分探索木の一つ。 従来の赤黒木に「赤ノードは常に親の左子ノード」という制約を加えたもの。
この制約により、想定する回転ケースは従来の赤黒木より少なくなる。
計算量
各クエリ \(O(\log N)\)
実装
非再帰版
template<typename T>
class LeftLeaningRedBlackTree {
enum NODE_COLOR { BLACK, RED };
struct Node {
Node *left, *right, *prt;
T key;
int color;
int size;
Node(T x) {
left = right = prt = nullptr;
color = RED;
key = x;
size = 1;
}
inline bool is_left(Node *node) const {
return left == node;
}
inline void assign(Node *node) {
this->key = node->key;
}
inline Node* rotate_left() {
Node *r = this->right, *m = r->left, *p = this->prt;
if((r->prt = p)) {
if(p->left == this) p->left = r;
else p->right = r;
}
if((this->right = m)) m->prt = this;
r->left = this; this->prt = r;
int sz = this->size;
this->size += (m ? m->size : 0) - r->size;
r->size = sz;
r->color = this->color;
this->color = RED;
return r;
}
inline Node* rotate_right() {
Node *l = this->left, *m = l->right, *p = this->prt;
if((l->prt = p)) {
if(p->left == this) p->left = l;
else p->right = l;
}
if((this->left = m)) m->prt = this;
l->right = this; this->prt = l;
int sz = this->size;
this->size += (m ? m->size : 0) - l->size;
l->size = sz;
l->color = this->color;
this->color = RED;
return l;
}
inline void flip_color() {
this->color ^= 1;
this->left->color ^= 1;
this->right->color ^= 1;
}
};
Node *root;
inline Node* find_node(Node *node, T x) {
if(node == nullptr) return nullptr;
while(node->key != x) {
if(x < node->key) {
if(!node->left) break;
node = node->left;
} else {
if(!node->right) break;
node = node->right;
}
}
return node;
}
inline static bool is_red(Node *node) {
return node && node->color == RED;
}
inline static bool is_black(Node *node) {
return !node || node->color == BLACK;
}
inline Node* move_red_left(Node *node) {
node->flip_color();
Node *right = node->right;
if(is_red(right->left)) {
right->rotate_right();
node = node->rotate_left();
node->flip_color();
if(!node->prt) this->root = node;
}
return node;
}
inline Node* move_red_right(Node *node) {
node->flip_color();
Node *left = node->left;
if(is_red(left->left)) {
node = node->rotate_right();
node->flip_color();
if(!node->prt) this->root = node;
}
return node;
}
inline Node* fixup(Node *node) {
if(is_red(node->right) && is_black(node->left)) {
node = node->rotate_left();
if(!node->prt) this->root = node;
}
if(is_red(node->left) && is_red(node->left->left)) {
node = node->rotate_right();
if(!node->prt) this->root = node;
}
if(is_red(node->left) && is_red(node->right)) {
node->flip_color();
}
return node;
}
public:
LeftLeaningRedBlackTree() {
this->root = nullptr;
}
inline bool find(T x) {
if(!this->root) return false;
Node *node = find_node(this->root, x);
return (node->key == x);
}
inline T at(int k) {
if(!this->root) {
return 0;
}
// assert(0 <= k < size);
Node *node = this->root;
++k;
while(1) {
int l_size = (node->left ? node->left->size : 0) + 1;
if(l_size == k) break;
if(k < l_size) {
node = node->left;
} else {
node = node->right;
k -= l_size;
}
}
return node->key;
}
inline bool insert(T x) {
if(!this->root) {
Node *new_node = new Node(x);
this->root = new_node;
new_node->color = BLACK;
return true;
}
Node *node = find_node(this->root, x);
if(node->key == x) return false;
Node *new_node = new Node(x);
if(x < node->key) {
node->left = new_node;
} else {
node->right = new_node;
}
new_node->prt = node;
while(node) {
++node->size;
node = fixup(node)->prt;
}
this->root->color = BLACK;
return true;
}
inline bool remove(T x) {
Node *node = this->root;
bool deleted = false;
while(node) {
if(x < node->key) {
if(!node->left) break;
if(is_black(node->left) && is_black(node->left->left)) {
node = move_red_left(node);
}
node = node->left;
continue;
}
if(is_red(node->left)) {
node = node->rotate_right();
if(!node->prt) this->root = node;
}
if(!node->right) {
if(node->key == x) deleted = true;
break;
}
if(is_black(node->right) && is_black(node->right->left)) {
node = move_red_right(node);
}
if(node->key == x) {
// delete_min(node->right);
Node *c_node = node->right;
while(c_node->left) {
if(is_black(c_node->left) && is_black(c_node->left->left)) {
c_node = move_red_left(c_node);
}
c_node = c_node->left;
}
node->assign(c_node);
node = c_node;
deleted = true;
break;
}
node = node->right;
}
if(deleted) {
Node *prt = node->prt;
if(prt) {
if(prt->is_left(node)) {
prt->left = nullptr;
} else {
prt->right = nullptr;
}
} else {
this->root = nullptr;
}
node = prt;
}
if(node) {
while(node) {
if(deleted) --node->size;
node = fixup(node)->prt;
}
this->root->color = BLACK;
}
return true;
}
int size() {
return (this->root ? this->root->size : 0);
}
};
Verified
-
AtCoder: "AtCoder Regular Contest 033 - C問題: データ構造": source (C++14, 147ms)
参考
-
Sedgewick, Robert. "Left-leaning red-black trees." Dagstuhl Workshop on Data Structures. 2008.