Weak AVL Tree, WAVL Tree, WAVL木
概要
平衝二分探索木の一つ。
各ノードにrankをもたせて管理し、各ノードは以下の制約を満たす。
-
親ノードとの rank差 (rank difference) は 1 もしくは 2
-
葉ノードの rank は 0
-
NILノードの rank は -1
挿入クエリのみであれば木は AVL Tree と同じ形になり、高さは高々約 \(1.44 \log_2 N\) になる。
削除クエリも含む場合は高さは高々 \(2 \log_2 N\) (赤黒木と同じ) になる。
また、挿入・削除クエリ1回ごとのrotate操作は高々2回 (\(O(1)\)) になる。
計算量
各クエリ \(O(\log N)\)
実装
各ノードに以下の情報を持たせている
-
左右の子ノード, 親ノード
-
key, rank
-
そのノード以下の部分木のサイズ
template<typename T>
class WAVLTree {
struct Node {
Node *left, *right, *prt;
T key;
int rank, size;
Node(T x) {
left = right = prt = nullptr;
rank = 0;
key = x;
size = 1;
}
inline bool is_left(Node *node) const {
return left == node;
}
inline void assign(Node *node) {
this->key = node->key;
}
inline Node* rotate_left() {
Node *r = this->right, *m = r->left, *p = this->prt;
if((r->prt = p)) {
if(p->left == this) p->left = r;
else p->right = r;
}
if((this->right = m)) m->prt = this;
r->left = this; this->prt = r;
int sz = this->size;
this->size += (m ? m->size : 0) - r->size;
r->size = sz;
return r;
}
inline Node* rotate_right() {
Node *l = this->left, *m = l->right, *p = this->prt;
if((l->prt = p)) {
if(p->left == this) p->left = l;
else p->right = l;
}
if((this->left = m)) m->prt = this;
l->right = this; this->prt = l;
int sz = this->size;
this->size += (m ? m->size : 0) - l->size;
l->size = sz;
return l;
}
inline Node* rotate_double_right() {
Node *l = this->left, *p = this->prt,
*m = l->right, *ml = m->left, *mr = m->right;
// l->rotate_left();
// this->rotate_right();
if((m->prt = p)) {
if(p->left == this) p->left = m;
else p->right = m;
}
if((l->right = ml)) ml->prt = l;
if((this->left = mr)) mr->prt = this;
m->left = l; l->prt = m;
m->right = this; this->prt = m;
int sz = this->size;
this->size += (mr ? mr->size : 0) - l->size;
l->size += (ml ? ml->size : 0) - m->size;
m->size = sz;
return m;
}
inline Node* rotate_double_left() {
Node *r = this->right, *p = this->prt,
*m = r->left, *ml = m->left, *mr = m->right;
// r->rotate_left();
// this->rotate_right();
if((m->prt = p)) {
if(p->left == this) p->left = m;
else p->right = m;
}
if((this->right = ml)) ml->prt = this;
if((r->left = mr)) mr->prt = r;
m->left = this; this->prt = m;
m->right = r; r->prt = m;
int sz = this->size;
this->size += (ml ? ml->size : 0) - r->size;
r->size += (mr ? mr->size : 0) - m->size;
m->size = sz;
return m;
}
};
Node *root;
inline Node* find_node(Node *node, T x) {
if(node == nullptr) return nullptr;
while(node->key != x) {
if(x < node->key) {
if(!node->left) break;
node = node->left;
} else {
if(!node->right) break;
node = node->right;
}
}
return node;
}
inline void remove_node(Node *node) {
T x = node->key;
Node *prt = node->prt;
if(!node->left || !node->right) {
Node *n_node = node->left ? node->left : node->right;
if(node->prt) {
if(x < prt->key) {
prt->left = n_node;
} else {
prt->right = n_node;
}
if(n_node) n_node->prt = prt;
node = n_node;
} else {
if(n_node) n_node->prt = nullptr;
this->root = n_node;
node = nullptr;
}
} else {
Node *c_node = find_node(node->right, x), *n_node = c_node->right;
Node *c_prt = c_node->prt;
if(node->right == c_node) {
if((node->right = n_node)) n_node->prt = c_prt;
} else {
if((c_prt->left = n_node)) n_node->prt = c_prt;
}
node->assign(c_node);
node = n_node; prt = c_prt;
}
Node *cur = prt;
while(cur) {
--cur->size;
cur = cur->prt;
}
if(!prt) return;
if(!prt->left && !prt->right && prt->rank == 1) {
// 2,2-leaf
prt->rank = 0;
if(rank_diff(prt->prt, prt) <= 2) {
return;
}
node = prt; prt = node->prt;
}
while(rank_diff(prt, node) == 3) {
Node *sib = (prt->left == node ? prt->right : prt->left);
if(!sib) {
if(rank_diff(prt, sib) != 2) {
break;
}
--prt->rank;
} else {
if(rank_diff(prt, sib) == 2) {
--prt->rank;
} else if(rank_diff(sib, sib->left) == 2 && rank_diff(sib, sib->right) == 2) {
--prt->rank;
--sib->rank;
} else break;
}
node = prt; prt = node->prt;
}
if(rank_diff(prt, node) == 3) {
if(prt->is_left(node)) {
Node *sib = prt->right, *s_right = sib->right;
if(rank_diff(sib, s_right) == 1) {
// rotate
prt->rotate_left();
++sib->rank;
if(!prt->left && !prt->right) {
prt->rank -= 2;
} else {
--prt->rank;
}
if(!sib->prt) {
this->root = sib;
}
} else {
// double rotate
Node *s_left = sib->left;
prt->rotate_double_left();
if(!s_left->prt) {
this->root = s_left;
}
prt->rank -= 2;
s_left->rank += 2;
--sib->rank;
}
} else {
Node *sib = prt->left, *s_left = sib->left;
if(rank_diff(sib, s_left) == 1) {
// rotate
prt->rotate_right();
++sib->rank;
if(!prt->left && !prt->right) {
prt->rank -= 2;
} else {
--prt->rank;
}
if(!sib->prt) {
this->root = sib;
}
} else {
// double rotate
Node *s_right = sib->right;
prt->rotate_double_right();
if(!s_right->prt) {
this->root = s_right;
}
prt->rank -= 2;
s_right->rank += 2;
--sib->rank;
}
}
}
}
inline static int rank_diff(Node *prt, Node *node) {
if(!prt) return 0;
return (node ? prt->rank - node->rank : prt->rank + 1);
}
public:
WAVLTree() {
root = nullptr;
}
// find a node with key x
inline bool find(T x) {
if(!this->root) {
return false;
}
Node *node = find_node(this->root, x);
return (node->key == x);
}
// find the k-th element.
inline T at(int k) {
if(!this->root) {
return 0;
}
// assert(0 <= k < size);
Node *node = this->root;
++k;
while(1) {
int l_size = (node->left ? node->left->size : 0) + 1;
if(l_size == k) break;
if(k < l_size) {
node = node->left;
} else {
node = node->right;
k -= l_size;
}
}
return node->key;
}
// insert a node with key x
inline bool insert(T x) {
if(!this->root) {
this->root = new Node(x);
return true;
}
Node *node = find_node(this->root, x);
if(node->key == x) {
return false;
}
Node *new_node = new Node(x);
new_node->prt = node;
if(x < node->key) {
node->left = new_node;
} else {
node->right = new_node;
}
while(node) {
++node->size;
node = node->prt;
}
node = new_node;
while(node->prt) {
Node *prt = node->prt;
if(rank_diff(prt, prt->left) + rank_diff(prt, prt->right) != 1) {
break;
}
++prt->rank;
node = prt;
}
if(!node->prt || rank_diff(node->prt, node) != 0) {
return true;
}
Node *prt = node->prt;
if(prt->is_left(node)) {
Node *right = node->right;
if(!right || rank_diff(node, right) == 2) {
// rotate
--prt->rank;
prt->rotate_right();
} else {
// double rotate
++right->rank;
--prt->rank;
--node->rank;
node = prt->rotate_double_right();
}
} else {
Node *left = node->left;
if(!left || rank_diff(node, left) == 2) {
// rotate
--prt->rank;
prt->rotate_left();
} else {
// double rotate
++left->rank;
--prt->rank;
--node->rank;
node = prt->rotate_double_left();
}
}
if(!node->prt) {
this->root = node;
}
return true;
}
// delete a node with key x
inline bool remove(T x) {
if(!this->root) {
return false;
}
Node *node = find_node(this->root, x);
if(node->key != x) {
return false;
}
remove_node(node);
return true;
}
// return the size of a tree
int size() {
return (this->root ? this->root->size : 0);
}
};
Verified
-
AtCoder: "AtCoder Regular Contest 033 - C問題: データ構造": source (C++14, 127ms)
参考
-
Haeupler, Bernhard, Siddhartha Sen, and Robert E. Tarjan. "Rank-balanced trees." ACM Transactions on Algorithms (TALG) 11.4 (2015): 1-26.