Range Minimum Query (RMQ)
概要
以下のクエリが処理できるセグメント木の実装
-
\(a_i\) の値を \(x\) に更新
-
\(a_l, a_{l+1}, ..., a_{r-1}\) の最小値を求める
セグメント木の最も基本的な形。
計算量
-
更新: \(O(\log N)\)
-
区間最小値: \(O(\log N)\)
実装(再起版)
#include<algorithm>
using namespace std;
using ll = long long;
#define N 100007
class SegmentTree {
const static ll inf = (1LL << 31) - 1;
int n, n0;
ll data[4*N];
public:
SegmentTree(int n) {
n0 = 1;
while(n0 < n) n0 <<= 1;
for(int i=0; i<2*n0; ++i) data[i] = inf;
}
void update(int k, ll x) {
k += n0-1;
data[k] = x;
while(k > 0) {
k = (k - 1) / 2;
data[k] = min(data[2*k+1], data[2*k+2]);
}
}
ll __query(int a, int b, int k, int l, int r) {
if(a <= l && r <= b) {
return data[k];
}
if(r <= a || b <= l) {
return inf;
}
ll lv = __query(a, b, 2*k+1, l, (l+r)/2);
ll rv = __query(a, b, 2*k+2, (l+r)/2, r);
return min(lv, rv);
}
ll query(int a, int b) {
return __query(a, b, 0, 0, n0);
}
};
Verified
-
AOJ: "DSL_2_A: Range Query - Range Minimum Query (RMQ)": source (C++14, 0.11sec)
実装(非再帰版)
#include<algorithm>
using namespace std;
using ll = long long;
#define N 100007
class SegmentTree {
const static ll inf = (1LL << 31) - 1;
int n, n0;
ll data[4*N];
public:
SegmentTree(int n) {
n0 = 1;
while(n0 < n) n0 <<= 1;
for(int i=0; i<2*n0; ++i) data[i] = inf;
}
void update(int k, ll x) {
k += n0-1;
data[k] = x;
while(k > 0) {
k = (k - 1) / 2;
data[k] = min(data[2*k+1], data[2*k+2]);
}
}
ll query(int l, int r) {
int l0 = l + n0, r0 = r + n0;
ll s = inf;
while(l0 < r0) {
if(r0 & 1) {
--r0;
s = min(s, data[r0-1]);
}
if(l0 & 1) {
s = min(s, data[l0-1]);
++l0;
}
l0 >>= 1; r0 >>= 1;
}
return s;
}
};
Verified
-
AOJ: "DSL_2_A: Range Query - Range Minimum Query (RMQ)": source (C++14, 0.12sec)