Segment tree beats (range minimize/maximize query, RMQ, RSQ, RAQ, RUQ)
概要
以下のクエリを処理する
-
\(a_l, a_{l+1}, ..., a_{r-1}\) の各 \(a_i\) について \(\min(a_i, x)\) に更新
-
\(a_l, a_{l+1}, ..., a_{r-1}\) の各 \(a_i\) について \(\max(a_i, x)\) に更新
-
\(a_l, a_{l+1}, ..., a_{r-1}\) の最大値を求める
-
\(a_l, a_{l+1}, ..., a_{r-1}\) の最小値を求める
-
\(a_l, a_{l+1}, ..., a_{r-1}\) の総和を求める
-
\(a_l, a_{l+1}, ..., a_{r-1}\) の各 \(a_i\) について \(x\) に更新
-
\(a_l, a_{l+1}, ..., a_{r-1}\) の各 \(a_i\) について \(a_i + x\) に更新
計算量
-
区間chminクエリ: \(N\) 個の要素に対し \(Q\) 回のクエリで \(O(N \log N + M \log^2 N)\) (ならし計算量)
-
その他のクエリ: 各クエリ \(O(\log N)\)
実装
#include<algorithm>
using namespace std;
using ll = long long;
// Segment Tree Beats
// - l<=i<r について、 A_i の値を min(A_i, x) に更新
// - l<=i<r について、 A_i の値を max(A_i, x) に更新
// - l<=i<r の中の A_i の最大値を求める
// - l<=i<r の中の A_i の最小値を求める
// - l<=i<r の A_i の和を求める
// - l<=i<r について、 A_i の値に x を加える
// - l<=i<r について、 A_i の値を x に更新
#define N 10003
class SegmentTree {
const ll inf = 1e18;
int n, n0;
ll max_v[4*N], smax_v[4*N], max_c[4*N];
ll min_v[4*N], smin_v[4*N], min_c[4*N];
ll sum[4*N];
ll len[4*N], ladd[4*N], lval[4*N];
void update_node_max(int k, ll x) {
sum[k] += (x - max_v[k]) * max_c[k];
if(max_v[k] == min_v[k]) {
max_v[k] = min_v[k] = x;
} else if(max_v[k] == smin_v[k]) {
max_v[k] = smin_v[k] = x;
} else {
max_v[k] = x;
}
if(lval[k] != inf && x < lval[k]) {
lval[k] = x;
}
}
void update_node_min(int k, ll x) {
sum[k] += (x - min_v[k]) * min_c[k];
if(max_v[k] == min_v[k]) {
max_v[k] = min_v[k] = x;
} else if(smax_v[k] == min_v[k]) {
min_v[k] = smax_v[k] = x;
} else {
min_v[k] = x;
}
if(lval[k] != inf && lval[k] < x) {
lval[k] = x;
}
}
void push(int k) {
if(n0-1 <= k) return;
if(lval[k] != inf) {
updateall(2*k+1, lval[k]);
updateall(2*k+2, lval[k]);
lval[k] = inf;
return;
}
if(ladd[k] != 0) {
addall(2*k+1, ladd[k]);
addall(2*k+2, ladd[k]);
ladd[k] = 0;
}
if(max_v[k] < max_v[2*k+1]) {
update_node_max(2*k+1, max_v[k]);
}
if(min_v[2*k+1] < min_v[k]) {
update_node_min(2*k+1, min_v[k]);
}
if(max_v[k] < max_v[2*k+2]) {
update_node_max(2*k+2, max_v[k]);
}
if(min_v[2*k+2] < min_v[k]) {
update_node_min(2*k+2, min_v[k]);
}
}
void update(int k) {
sum[k] = sum[2*k+1] + sum[2*k+2];
if(max_v[2*k+1] < max_v[2*k+2]) {
max_v[k] = max_v[2*k+2];
max_c[k] = max_c[2*k+2];
smax_v[k] = max(max_v[2*k+1], smax_v[2*k+2]);
} else if(max_v[2*k+1] > max_v[2*k+2]) {
max_v[k] = max_v[2*k+1];
max_c[k] = max_c[2*k+1];
smax_v[k] = max(smax_v[2*k+1], max_v[2*k+2]);
} else {
max_v[k] = max_v[2*k+1];
max_c[k] = max_c[2*k+1] + max_c[2*k+2];
smax_v[k] = max(smax_v[2*k+1], smax_v[2*k+2]);
}
if(min_v[2*k+1] < min_v[2*k+2]) {
min_v[k] = min_v[2*k+1];
min_c[k] = min_c[2*k+1];
smin_v[k] = min(smin_v[2*k+1], min_v[2*k+2]);
} else if(min_v[2*k+1] > min_v[2*k+2]) {
min_v[k] = min_v[2*k+2];
min_c[k] = min_c[2*k+2];
smin_v[k] = min(min_v[2*k+1], smin_v[2*k+2]);
} else {
min_v[k] = min_v[2*k+1];
min_c[k] = min_c[2*k+1] + min_c[2*k+2];
smin_v[k] = min(smin_v[2*k+1], smin_v[2*k+2]);
}
}
void _update_min(ll x, int a, int b, int k, int l, int r) {
if(b <= l || r <= a || max_v[k] <= x) {
return;
}
if(a <= l && r <= b && smax_v[k] < x) {
update_node_max(k, x);
return;
}
push(k);
_update_min(x, a, b, 2*k+1, l, (l+r)/2);
_update_min(x, a, b, 2*k+2, (l+r)/2, r);
update(k);
}
void _update_max(ll x, int a, int b, int k, int l, int r) {
if(b <= l || r <= a || x <= min_v[k]) {
return;
}
if(a <= l && r <= b && x < smin_v[k]) {
update_node_min(k, x);
return;
}
push(k);
_update_max(x, a, b, 2*k+1, l, (l+r)/2);
_update_max(x, a, b, 2*k+2, (l+r)/2, r);
update(k);
}
void addall(int k, ll x) {
max_v[k] += x;
if(smax_v[k] != -inf) smax_v[k] += x;
min_v[k] += x;
if(smin_v[k] != inf) smin_v[k] += x;
sum[k] += len[k] * x;
if(lval[k] != inf) {
lval[k] += x;
} else {
ladd[k] += x;
}
}
void updateall(int k, ll x) {
max_v[k] = x; smax_v[k] = -inf;
min_v[k] = x; smin_v[k] = inf;
max_c[k] = min_c[k] = len[k];
sum[k] = x * len[k];
lval[k] = x; ladd[k] = 0;
}
void _add_val(ll x, int a, int b, int k, int l, int r) {
if(b <= l || r <= a) {
return;
}
if(a <= l && r <= b) {
addall(k, x);
return;
}
push(k);
_add_val(x, a, b, 2*k+1, l, (l+r)/2);
_add_val(x, a, b, 2*k+2, (l+r)/2, r);
update(k);
}
void _update_val(ll x, int a, int b, int k, int l, int r) {
if(b <= l || r <= a) {
return;
}
if(a <= l && r <= b) {
updateall(k, x);
return;
}
push(k);
_update_val(x, a, b, 2*k+1, l, (l+r)/2);
_update_val(x, a, b, 2*k+2, (l+r)/2, r);
update(k);
}
ll _query_max(int a, int b, int k, int l, int r) {
if(b <= l || r <= a) {
return -inf;
}
if(a <= l && r <= b) {
return max_v[k];
}
push(k);
ll lv = _query_max(a, b, 2*k+1, l, (l+r)/2);
ll rv = _query_max(a, b, 2*k+2, (l+r)/2, r);
return max(lv, rv);
}
ll _query_min(int a, int b, int k, int l, int r) {
if(b <= l || r <= a) {
return inf;
}
if(a <= l && r <= b) {
return min_v[k];
}
push(k);
ll lv = _query_min(a, b, 2*k+1, l, (l+r)/2);
ll rv = _query_min(a, b, 2*k+2, (l+r)/2, r);
return min(lv, rv);
}
ll _query_sum(int a, int b, int k, int l, int r) {
if(b <= l || r <= a) {
return 0;
}
if(a <= l && r <= b) {
return sum[k];
}
push(k);
ll lv = _query_sum(a, b, 2*k+1, l, (l+r)/2);
ll rv = _query_sum(a, b, 2*k+2, (l+r)/2, r);
return lv + rv;
}
public:
SegmentTree(int n) {
SegmentTree(n, nullptr);
}
SegmentTree(int n, ll *a) : n(n) {
n0 = 1;
while(n0 < n) n0 <<= 1;
for(int i=0; i<2*n0; ++i) ladd[i] = 0, lval[i] = inf;
len[0] = n0;
for(int i=0; i<n0-1; ++i) len[2*i+1] = len[2*i+2] = (len[i] >> 1);
for(int i=0; i<n; ++i) {
max_v[n0-1+i] = min_v[n0-1+i] = sum[n0-1+i] = (a != nullptr ? a[i] : 0);
smax_v[n0-1+i] = -inf;
smin_v[n0-1+i] = inf;
max_c[n0-1+i] = min_c[n0-1+i] = 1;
}
for(int i=n; i<n0; ++i) {
max_v[n0-1+i] = smax_v[n0-1+i] = -inf;
min_v[n0-1+i] = smin_v[n0-1+i] = inf;
max_c[n0-1+i] = min_c[n0-1+i] = 0;
}
for(int i=n0-2; i>=0; i--) {
update(i);
}
}
// range minimize query
void update_min(int a, int b, ll x) {
_update_min(x, a, b, 0, 0, n0);
}
// range maximize query
void update_max(int a, int b, ll x) {
_update_max(x, a, b, 0, 0, n0);
}
// range add query
void add_val(int a, int b, ll x) {
_add_val(x, a, b, 0, 0, n0);
}
// range update query
void update_val(int a, int b, ll x) {
_update_val(x, a, b, 0, 0, n0);
}
// range minimum query
ll query_max(int a, int b) {
return _query_max(a, b, 0, 0, n0);
}
// range maximum query
ll query_min(int a, int b) {
return _query_min(a, b, 0, 0, n0);
}
// range sum query
ll query_sum(int a, int b) {
return _query_sum(a, b, 0, 0, n0);
}
};