概要
各辺 \(e\) が容量 \(c_e\) と単位コスト \(d_e\) を持つ、有向グラフ \(G = (V, E)\) に対し、 特定のsourceとsinkの間に流量 \(F\) を流す時の最小コストを求める。
蟻本[1]を参考にして実装。
with Bellman-Ford Algorithm
以下を、流量 \(F\) を流しきるまで繰り返す
-
Bellman-Ford Algorithmでsourceとsinkの間の最小コストとなるパスを求める
-
そのパスに流せる限り流す
計算量
\(O(F |V| |E|)\)
実装
# 最小費用流(minimum cost flow)
class MinCostFlow:
def __init__(self, n):
self.n = n
self.G = [[] for i in range(n)]
def addEdge(self, f, t, cap, cost):
# [to, cap, cost, rev]
self.G[f].append([t, cap, cost, len(self.G[t])])
self.G[t].append([f, 0, -cost, len(self.G[f])-1])
def minCostFlow(self, s, t, f):
n = self.n
G = self.G
prevv = [0]*n; preve = [0]*n
INF = 10**9+7
res = 0
while f:
dist = [INF]*n
dist[s] = 0
update = 1
while update:
update = 0
for v in range(n):
if dist[v] == INF:
continue
gv = G[v]
for i in range(len(gv)):
to, cap, cost, rev = gv[i]
if cap > 0 and dist[v] + cost < dist[to]:
dist[to] = dist[v] + cost
prevv[to] = v; preve[to] = i
update = 1
if dist[t] == INF:
return -1
d = f; v = t
while v != s:
d = min(d, G[prevv[v]][preve[v]][1])
v = prevv[v]
f -= d
res += d * dist[t]
v = t
while v != s:
e = G[prevv[v]][preve[v]]
e[1] -= d
G[v][e[3]][1] += d
v = prevv[v]
return res
Verified
-
AOJ: "GRL_6_B: Network Flow - Minimum Cost Flow": source (Python3, 0.08sec)
with Dijkstra’s Algorithm
ポテンシャルを導入して、ダイクストラ法を用いて最短路を計算するようにしたもの。
計算量
\(O(F |E| \log |V|)\)
実装
from heapq import heappush, heappop
class MinCostFlow:
INF = 10**18
def __init__(self, N):
self.N = N
self.G = [[] for i in range(N)]
def add_edge(self, fr, to, cap, cost):
forward = [to, cap, cost, None]
backward = forward[3] = [fr, 0, -cost, forward]
self.G[fr].append(forward)
self.G[to].append(backward)
def flow(self, s, t, f):
N = self.N; G = self.G
INF = MinCostFlow.INF
res = 0
H = [0]*N
prv_v = [0]*N
prv_e = [None]*N
d0 = [INF]*N
dist = [INF]*N
while f:
dist[:] = d0
dist[s] = 0
que = [(0, s)]
while que:
c, v = heappop(que)
if dist[v] < c:
continue
r0 = dist[v] + H[v]
for e in G[v]:
w, cap, cost, _ = e
if cap > 0 and r0 + cost - H[w] < dist[w]:
dist[w] = r = r0 + cost - H[w]
prv_v[w] = v; prv_e[w] = e
heappush(que, (r, w))
if dist[t] == INF:
return None
for i in range(N):
H[i] += dist[i]
d = f; v = t
while v != s:
d = min(d, prv_e[v][1])
v = prv_v[v]
f -= d
res += d * H[t]
v = t
while v != s:
e = prv_e[v]
e[1] -= d
e[3][1] += d
v = prv_v[v]
return res